Preview

Biosafety and Biotechnology

Advanced search

COMPARATIVE ANALYSIS OF METHODS FOR DETERMINING THE CONTENT OF THE TOTAL PROTEIN SARS-COV-2 OF THE COVID-19 VIRUS

https://doi.org/10.58318/2957-5702-2023-14-6-15

Abstract

One of the main requirements for the new vaccines being created is their safety in use, including the total protein content, which are one of the main indicators of the quality and safety of vaccines. This article presents the results of work on the comparative analysis of methods for determining the total protein in the active pharmaceutical substance (AFS) and also the bulk product of the vaccine "QazCovid-in ® .Determination of the total protein concentration was carried out by comparing the methods of Lowry, Bradford, commercial sets of Clini Test-BL and BSA Gold Protein. As a result of the determination of the total protein in the composition of the AFS by the classical Lowry method and the commercial CliniTest-BL kit, the highest values were obtained on average 616.67 and 589 μl/ml, and in the bulk product 51.11 and 47.38 μl/ml, respectively. The most minimal indicator of the total protein content of 38.39±0.000059 is shown by the method using the commercial BSA Gold Protein kit. The average values of total protein content showed the results obtained by the Bradford method and the determination of total protein by a commercial set of Clini Test-BL. The data obtained allow us to recommend the use of a set of Clini Test-BL for use in quality control, since this set is characterized by the ease and speed of the determination method, which is not inferior to the classical Lowry method. When determining the total protein content in the bulk product used to prepare the QazVac vaccine against COVID-19, the classical Lowry method showed the best result with a high degree of sensitivity.

About the Authors

Zh. S. Absatova
«Research Institute of Biological Safety Problems» Ministry of Health of the Republic of Kazakhstan
Kazakhstan

Guardeysky



К. А. Shorayeva
«Research Institute of Biological Safety Problems» Ministry of Health of the Republic of Kazakhstan
Kazakhstan

Guardeysky



E. Zh. Kalimolda
«Research Institute of Biological Safety Problems» Ministry of Health of the Republic of Kazakhstan
Kazakhstan

Guardeysky



Zh. S. Abai
«Research Institute of Biological Safety Problems» Ministry of Health of the Republic of Kazakhstan
Kazakhstan

Guardeysky



К. К. Jekebekov
«Research Institute of Biological Safety Problems» Ministry of Health of the Republic of Kazakhstan
Kazakhstan

Guardeysky



S. U. Moldagulova
«Research Institute of Biological Safety Problems» Ministry of Health of the Republic of Kazakhstan
Kazakhstan

Guardeysky



G. Zh. Nakhanova
«Research Institute of Biological Safety Problems» Ministry of Health of the Republic of Kazakhstan
Kazakhstan

Guardeysky



Е. А. Shayakhmetov
«Research Institute of Biological Safety Problems» Ministry of Health of the Republic of Kazakhstan
Kazakhstan

Guardeysky



T. I. Bayseit
«Research Institute of Biological Safety Problems» Ministry of Health of the Republic of Kazakhstan
Kazakhstan

Guardeysky



S. O. Sadikaliеva
«Research Institute of Biological Safety Problems» Ministry of Health of the Republic of Kazakhstan
Kazakhstan

Guardeysky



А. А. Kerimbayev
«Research Institute of Biological Safety Problems» Ministry of Health of the Republic of Kazakhstan
Kazakhstan

Guardeysky



References

1. Gorbalenya, A.E. et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 // Nat. Microbiol. – 2020;5(4):536–544.

2. Bosch, B.J. et al. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex // J. Virol. – 2003;77(16):8801–8811.

3. Watanabe, Y. et al. Site-specific glycan analysis of the SARS-CoV-2 spike // Science. – 2020;369(6501):330–333.

4. Nieto-Torres, J.L. et al. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein // Virology. – 2011;415(2):69–82.

5. Liao, Y. et al. Biochemical and functional characterization of the membrane association and membrane permeabilizing activity of the severe acute respiratory syndrome coronavirus envelope protein // Virology. – 2006;349(2):264–275.

6. Tseng, Y.T. et al. SARS-CoV envelope protein palmitoylation or nucleocapid association is not required for promoting virus-like particle production // J. Biomed. Sci. – 2014;21(34):21–34.

7. Schoeman, D. Coronavirus envelope protein: current knowledge // Virol. J. – 2019;16(1):69.

8. Hung, A.Y., Sheng M. PDZ domains: structural modules for protein complex assembly // J. Biol. Chem. – 2002;277(8):5699–5702.

9. Javier, R.T., Rice, A.P. Emerging theme: cellular PDZ proteins as common targets of pathogenic viruses // J. Virol. – 2011;85(22):11544–11556.

10. Ariel, L.A., Blake, J.L., Brenda, G.H. A conserved domain in the coronavirus membrane protein tail is important for virus assembly // J. Virol. – 2010;84(21):1418–11428.

11. Chang, C.K. et al. Modular organization of SARS coronavirus nucleocapsid protein // J. Biomed. Sci. – 2006;13(1):59–72.

12. Kumar, A. et al. Characterization of nucleocapsid (N) protein from novel coronavirus SARS-CoV-2 // Biochem. Biophys. Res. Commun. – 2020;527(3):618–623.

13. Macnaughton, M. et al. Ribonucleo protein-like structures from coronavirus particles // J. Gen. Virol. – 1978;39(3):545–549.

14. Kuo, L., Koetzner, C.A., Masters, P.S., A key role for the carboxy-terminal tail of the murine coronavirus nucleocapsid protein in coordination of genome packaging // Virology. – 2016;494:100–107.

15. Grunewald, M.E. et al. The coronavirus nucleocapsid protein is ADP-ribosylated // Virology. – 2018;517:62–68.

16. Chen, Y. et al. The phosphorylation of the N protein could affect PRRSV virulence in vivo // Vet. Microbiol. – 2019;231:226–231.

17. Perutz, M.F., Rossmann, M.G., Cullis, A.F., Muirhead, H., Will, G., North, A.C. Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis (англ.) // Nature. – 1960;185(4711):416-422. PMID 18990801.

18. Белки // Химическая энциклопедия. – Москва: Советская энциклопедия. – 1988. Архивная копия от 3 февраля 2012 на Wayback Machine.

19. Якубке X., Ешкайте X. Аминокислоты, пептиды, белки. // М. Мир. – 1985.

20. Фармакопея США, Национальный формуляр (USP 37, NF 32). 1057 Статья, полученная из биотехнологии: анализ общего белка.

21. Европейская фармакопея 8.0, 2.5.33: Общий белок.

22. Lowry, O.H., Rosenbrough, N.J., Farr ,A.Z., Randall, R.J. Protein measurement with the Folin phenol reagent // J. Biol. Chem. – 1951;193:265-275.

23. Браун Р., Джарвис К., Хайленд К. Измерение белка с использованием бицинхониновой кислоты: устранение мешающих веществ. Анальная биохимия. 1989;180:136-9 опубликовано

24. Redinbaugh M, Turley R. Адаптация анализа белка бицинхониновой кислоты для использования с микротитровальными планшетами и фракциями градиента сахарозы. Анальная биохимия. 1986;153:267-71 опубликовано

25. Noble, J.E., Bailey, M.J.A. Quantitation of proteins // Methods in enzymology. 2009;463:73-95.

26. Malim, T., Ridzuan, P.D. Principle in Biochemistry. http://www.slideshare.net/UmiBiee, 2010.

27. Anggun M. Determining the concentration of protein on egg albumin through Lowry method. http://www.scribd.com, 2013.

28. Бенсадун А., Вайнштейн Д. Анализ белков в присутствии мешающих материалов // Anal Biochem, 70 (1976), – С. 241-250.

29. Batav1 C., Gothalwal R., Tembhre M. Еfficacy of the established methods for determination of protein in fish visceral extract. 462024, India.

30. Полачек И., Кабиб Э. Простая методика определения белка по методу Лоури в разбавленных растворах и в присутствии мешающих веществ // Anal Biochem, 117 (1982). – С. 311-314.

31. Родригес-Вико Ф., Мартинес-Кайуэла М., Гарсиа-Перегрин Э., Рамирес Х. Методика устранения помех в методе Лоури для определения белка // Anal Biochem, 183 (1989), – С. 275- 278.

32. Танялчин Т., Кутай Ф.З., Аслан Д. / Исследование интерференции следует проводить для каждого используемого метода измерения белка // Accredit Qual Assur, 6 (2001), – С. 427- 430.

33. Кусуноки Х., Окума К., Хамагути И. / Оценка влияния лактозы на вакцины и предложение методологической корректировки определения общего белка по методу Лоури // Jpn J Infect Dis, 65 (2012), – С. 489-494.


Review

For citations:


Absatova Zh.S., Shorayeva К.А., Kalimolda E.Zh., Abai Zh.S., Jekebekov К.К., Moldagulova S.U., Nakhanova G.Zh., Shayakhmetov Е.А., Bayseit T.I., Sadikaliеva S.O., Kerimbayev А.А. COMPARATIVE ANALYSIS OF METHODS FOR DETERMINING THE CONTENT OF THE TOTAL PROTEIN SARS-COV-2 OF THE COVID-19 VIRUS. Biosafety and Biotechnology. 2023;(14):6-15. (In Russ.) https://doi.org/10.58318/2957-5702-2023-14-6-15

Views: 364


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2707-7241 (Print)
ISSN 2957-5702 (Online)