Preview

Biosafety and Biotechnology

Advanced search

COMPARISON OF THE RESULTS OF CULTURING CELLS AND VIRUSES ON THE NEW SEPLIFE® LX-MC-DEX1 MICROCARRIER WITH EXISTING MICROCARRIERS

https://doi.org/10.58318/2957-5702-2022-11-13-22

Abstract

microcarriers are small solid particles 90–350 µm in size, on the surface of which cells grow in the form of a monolayer. The two main properties of microcarriers are cell adhesion and high cell production. According to the results of a comparative study conducted on various parameters, it was determined that each microcarrier has its own advantages and disadvantages. In our study, the properties of SEPLIFE® LX-MC-dex1 and Cytodex 3 microcarriers were compared. According to the results of the studies, it was found that SEPLIFE® LX-MC-dex1, containing an artificial substance, is not inferior to Cytodex 3 microcarrier widely used in production in all properties and ease of use. The main advantage of the SEPLIFE® LX-MC-dex1 microcarrier is its cost effectiveness, i.e. it is 5 times cheaper than Cytodex 3. In this regard, the SEPLIFE® LX-MC-dex1 microcarrier was found to be cost-effective.

About the Authors

Sh. S. Turyskeldi
Scientific Research Institute of Biological Safety Problems
Kazakhstan


Zh. Zh. Sametova
Scientific Research Institute of Biological Safety Problems
Kazakhstan


A. K. Usembay
Scientific Research Institute of Biological Safety Problems
Kazakhstan


Ye. A. Bulatov
Scientific Research Institute of Biological Safety Problems
Kazakhstan


References

1. Van Wezel A. Growth of Cell-strains and Primary Cells on Micro-carriers in Homogeneous Culture// Nature. – 1967. – Vol. 216. – P. 64-65. https://doi.org/10.1038/216064a0

2. G.E. Healthcare Microcarrier Cell Culture: Principles and Methods. – 2005.

3. Kehoe D., Jing D., Lock L., Tzanakakis E. Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng. Part A. – 2010. – Vol.16. – P. 405-421. doi.org/10.1089/ten. tea.2009.0454

4. Forestell S., Kalogerakis N., Behie L., Gerson D. Development of the optimal inoculation conditions for microcarrier cultures Biotechnol//Bioeng. –2002. –Vol.39. – P. 305-313. doi.org/10.1002/ bit.260390308

5. Caron M., Emans P., Coolsen M., Voss L., Surtel D., Cremers A., van Rhijn L. Welting Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures Osteoarthr// Cartil. – 2012. – Vol.20. – P.1170-1178. doi: 10.1016/j.joca.2012.06.016

6. Kistner O., Barrett P., Mundt W., Reiter M., Schober-Bendixen S., Eder G., Dorner F. Development of a Vero cell-derived influenza whole virus vaccine//Dev. Biol. Stand. –1999. –Vol. 98. – P. 101-110. http://www.ncbi.nlm.nih.gov/pubmed/10494963 Barrett P., Mundt W., Kistner O., Howard M. Vero cell platform in vaccine production: moving towards cell culture-based viral vaccines//Expert Rev. Vaccines. – 2009. –Vol.8. – P. 607-618.

7. Montagnon B.J., Fanget B., Vincent-Falquet J.C. Industrial-scale production of inactivated poliovirus vaccine prepared by culture of vero cells on microcarrier//Clin. Infect. Dis. – 2004. –Vol.6. – P. 341- 344. doi: 10.1093/clinids/6.Supplement_2.S341

8. Montagnon B., Vincent-Falquet J.C., Fanget B. Thousand litre scale microcarrier culture of Vero cells for killed polio virus vaccine // Promising results Dev. Biol. Stand. –2003. –Vol.55. –P. 37-42. http://www.ncbi.nlm.nih.gov/pubmed/6677539

9. Montagnon B.J., Vincent-Falquet J.C., Saluzzo J.F. Experience with vero cells at Pasteur Mérieux Connaught// Dev. Biol. Stand. – 1999. – Vol.98. – P. 137-140.

10. Derakhti S., Safiabadi-Tali S.H., Amoabediny G., Sheikhpour M. Attachment and detachment strategies in microcarrier-based cell culture technology: A comprehensive review. – 2019. https:// doi.org/10.1016/j.msec.2019.109782

11. Reed I.J., Muench H.A. A simple method of estimating fifty per cent endpoints // American Journal of Hygiene. – 1938. –Vol.27. – P. 493-497.

12. ГОСТ 28085-2013 Средства лекарственные биологические для ветеринарного применения. Методы контроля стерильности.

13. Agathos Sart S.N. Large-scale expansion and differentiation of mesenchymal stem cells in microcarrier-based stirred bioreactors // S. Turksen (Ed.), Bioreactors in Stem Cell Biology, Humana Press, New York, NY. – 2015. –Vol.87. – P. 101-102. doi:10.1007/7651_2015_314

14. Tamura A., Kobayashi J., Yamato M., Okano T. Temperature-responsive poly (N-isopropylacrylamide)- grafted microcarriers for large-scale non-invasive harvest of anchorage-dependent cells. Biomaterials. – 2012. –Vol.33. – P. 3803-3812. doi:10.1016/j.biomaterials.2012.01.060

15. Tavassoli H., Alhosseini S.N., Tay A., Chan P.P.Y.,Weng Oh S.K., Warkiani M.E. Large-scale production of stem cells utilizing microcarriers: a biomaterials engineering perspective from academic research to commercialized products Biomaterials – 2018. –Vol.181. – P. 333-346. doi: 10.1016/j. biomaterials.2018.07.016

16. Dame M.K., Varani J. Recombinant collagen for animal product-free dextran microcarriers// In Vitro Cell Dev. Biol. – Anim. – 2009. –Vol.44. – P. 407-414. https://doi.org/10.1007/s11626-008-9139-4.

17. Badenes S.M., Fernandes T.G., Miranda C.C., Pusch Klein A., Haupt S., Rodrigues C.A.A.V., Diogo M.M., Brüstle O., Cabral J.M.M.S. Long-term expansion of human induced pluripotent stem cells in a microcarrier-based dynamic system//J. Chem. Technol. Biotechnol. – 2017. – Vol.92. – P. 492- 503. doi: 10.1002/jctb.5074

18. Fan Y., Hsiung M., Cheng C., Tzanakakis E.S. Facile engineering of xeno-free microcarriers for the scalable cultivation of human pluripotent stem cells in stirred suspension // Tissue Eng. Part A. – 2013. – Vol.20. – P.1-43. doi:10.1089/ten.TEA.2013.0219

19. Lam A.T.L., Li J., Chen A.K.L., Reuveny S., Oh S.K.W., Birch W.R. Cationic surface charge combined with either vitronectin or laminin dictates the evolution of human embryonic stem cells/microcarrier aggregates and cell growth in agitated cultures // Stem Cells Dev. – 2014. – Vol.23. – P. 1688- 1703. DOI: 10.1089/scd.2013.0645


Review

For citations:


Turyskeldi Sh.S., Sametova Zh.Zh., Usembay A.K., Bulatov Ye.A. COMPARISON OF THE RESULTS OF CULTURING CELLS AND VIRUSES ON THE NEW SEPLIFE® LX-MC-DEX1 MICROCARRIER WITH EXISTING MICROCARRIERS. Biosafety and Biotechnology. 2022;(11):13-22. (In Russ.) https://doi.org/10.58318/2957-5702-2022-11-13-22

Views: 1524


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2707-7241 (Print)
ISSN 2957-5702 (Online)