ОБЗОР ТЕКУЩЕЙ СИТУАЦИИ ПО ВАКЦИНАМ ПРОТИВ СЕЗОННОГО ГРИППА
https://doi.org/10.58318/2957-5702-2024-18-75-93
Аннотация
Заражение вирусом гриппа вызывает сезонные эпидемии и периодические пандемии, приводящие к огромной заболеваемости и смертности во всем мире. Вакцинация является важнейшим инструментом профилактики гриппа, при этом требуется ежегодное обновление состава вакцины из-за постоянной изменчивости вируса гриппа. Эпидемиологический надзор за вирусом играет важную роль для лучшего выбора вирусов-кандидатов для вакцин и раннего выявления штаммов, устойчивых к лекарствам.
В данной работе представлен обзор текущих вариантов вакцин и существующих разработок-кандидатов в вакцины. На сегодняшний день в мире лицензированы три типа вакцин против гриппа: инактивированные, живые ослабленные и рекомбинантные. Эффективность текущего варианта вакцин против гриппа является субоптимальной и оценивается в 40–60 %, когда штаммы вакцин антигенно хорошо соответствуют циркулирующим вирусам. В целом вакцины против гриппа эффективны против заболеваемости и смертности среди населения от данной инфекции. Однако эффективность вакцины зависит от ряда факторов, таких как возраст вакцинируемых, соответствие штамма, входящего в состав вакцины, циркулирующему вирусу, сам процесс производства, а также история предыдущей вакцинации субъекта. Вакцины следующего поколения, универсальные вакцины и комбинированные вакцины являются результатом современных достижений и основой для перспективы развития противогриппозных вакцин
Об авторе
Д. БайызбековаКыргызстан
Байызбекова Джайнагуль, доктор медицинских наук, профессор
Список литературы
1. Asha K, Kumar B (2019) Emerging influenza D virus threat: what we know so far! J Clin Med 8:192. https://doi.org/10.3390/jcm8020192
2. Dawson WK, Lazniewski M, Plewczynski D (2017) RNA structure interactions and ribonucleoprotein processes of the influenza A virus. Brief Funct Genom 17:402–414. https://doi.org/10.1093/bfgp/elx028
3. Cowling BJ, Ip DK, Fang VJ, Suntarattiwong P, Olsen SJ, Levy J, et al. Aerosol transmission is an important mode of influenza A virus spread. Nat Commun. 2013;4:1935.
4. Tenforde MW, Kondor RJ, Chung JR, Zimmerman RK, Nowalk MP, Jackson ML, Jackson LA, Monto AS, Martin ET, Belongia EA, McLean HQ (2021) Effect of antigenic drift on influenza vaccine effectiveness in the United States—2019–2020. Clin Infect Dis 73(11):e4244–e4250. https://doi.org/10.1093/cid/ciaa1884
5. Nuwarda R.F., Alharbi A.A., Kayser V. An Overview of Influenza Viruses and Vaccines. Vaccines. 2021;9:1032. doi: 10.3390/vaccines9091032.
6. Trombetta C.M., Montomoli E., Di Bartolo I., Ostanello F., Chiapponi C., Marchi S. Detection of antibodies against influenza D virus in swine veterinarians in Italy in 2004. J. Med. Virol. 2021;94:2855–2859. doi: 10.1002/jmv.27466.
7. Trombetta C.M., Marchi S., Manini I., Kistner O., Li F., Piu P., Manenti A., Biuso F., Sreenivasan C., Druce J., et al. Influenza D Virus: Serological Evidence in the Italian Population from 2005 to 2017. Viruses. 2019;12:30. doi: 10.3390/v12010030.
8. Sederdahl B.K., Williams J.V. Epidemiology and Clinical Characteristics of Influenza C Vi-rus. Viruses. 2020;12:89. doi: 10.3390/v12010089.
9. Borkenhagen L.K., Salman M.D., Ma M.J., Gray G.C. Animal influenza virus infections in humans: A commen-tary. Int. J. Infect. Dis. 2019;88:113–119. doi: 10.1016/j.ijid.2019.08.002.
10. Sanchez-de Prada L., Rojo-Rello S., Dominguez-Gil M., Tamayo-Gomez E., Ortiz de Lejarazu-Leonardo R., Eiros J.M., Sanz-Munoz I. Influenza B Lineages Have More in Common Than Meets the Eye. Trivalent Influenza Vaccines Trigger Heterotypic Antibodies Against Both Influenza B Viruses. Front. Microbiol. 2021;12:737216. doi: 10.3389/fmicb.2021.737216.
11. Rajendran M., Krammer F., McMahon M. The Human Antibody Response to the Influenza Virus Neuraminidase Following Infection or Vaccination. Vaccines. 2021;9:846. doi: 10.3390/vaccines9080846.
12. Boivin S., Cusack S., Ruigrok R.W., Hart D.J. Influenza A virus polymerase: Structural insights into replication and host adaptation mechanisms. J. Biol. Chem. 2010;285:28411–28417. doi: 10.1074/jbc.R110.117531.
13. Tosh P.K., Jacobson R.M., Poland G.A. Influenza vaccines: From surveillance through production to protection. Mayo Clin. Proc. 2010;85:257–273. doi: 10.4065/mcp.2009.0615.
14. Perofsky A.C., Nelson M.I. The challenges of vaccine strain selection. Elife. 2020;9:e62955. doi: 10.7554/eLife.62955.
15. Taubenberger J.K., Morens D.M., Fauci A.S. The next influenza pandemic: Can it be predicted? JAMA. 2007;297:2025–2027. doi: 10.1001/jama.297.18.2025.
16. World Health Organization. Influenza A (H1N1) Pandemic 2009–2010. Overview. [(accessed on 25 February 2022)]. Available online: https://www.who.int/emergencies/situations/influenza-a-(h1n1)-outbreak
17. Hancock K., Veguilla V., Lu X., Zhong W., Butler E.N., Sun H., Liu F., Dong L., DeVos J.R., Gargiullo P.M., et al. Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N. Engl. J. Med. 2009;361:1945–1952. doi: 10.1056/NEJMoa0906453.
18. Centers for Disease Control and Prevention (CDC). Serum cross-reactive antibody response to a novel influenza A (H1N1) virus after vaccination with seasonal influenza vaccine. MMWR Morb. Mortal. Wkly. Rep. 2009;58:521–524.
19. Dawood F.S., Iuliano A.D., Reed C., Meltzer M.I., Shay D.K., Cheng P.Y., Bandaranayake D., Breiman R.F., Brooks W.A., Buchy P., et al. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: A modelling study. Lancet Infect. Dis. 2012;12:687–695. doi: 10.1016/S1473-3099(12)70121-4.
20. Fineberg H.V. Pandemic preparedness and response—Lessons from the H1N1 influenza of 2009. N. Engl. J. Med. 2014;370:1335–1342. doi: 10.1056/NEJMra1208802.
21. World Health Organization. Avian Influenza Weekly Update Number 957. World Health Organization; Geneva, Switzerland: 2024.
22. Centers for Disease Control and Prevention. Influenza (Flu). Past Pandemics. [(accessed on 25 February 2022)]; Available online: https://www.cdc.gov/flu/pandemic-resources/basics/past-pandemics.html
23. Kilbourne E.D. Influenza pandemics of the 20th century. Emerg. Infect. Dis. 2006;12:9–14. doi: 10.3201/eid1201.051254.
24. World Health Organization. Cumulative Number of Confirmed Human Cases for Avian Influenza A(H5N1) Reported to WHO, 2003–2024, 03 May 2024. World Health Organization; Geneva, Switzerland: 2024.
25. World Health Organization. Genetic and antigenic characteristics of zoonotic influenza A viruses and development of candidate vaccine viruses for pandemic preparedness. World Health Organization; Geneva, Switzerland: 2024. [(accessed on 02 Августа 2024)]. Available online: https://cdn.who.int/media/docs/default-source/influenza/who-influenza-recommendations/vcm-northern-hemisphere-recommendation-2024-2025/202402_zoonotic_vaccinvirusupdate.pdf?sfvrsn=70150120_4
26. World Health Organization. Influenza at the Human-Animal Interface. Summary and risk assessment, from 22 December 2023 to 26 February 2024. World Health Organization; Geneva, Switzerland: 2024.
27. Harrington W.N., Kackos C.M., Webby R.J. The evolution and future of influenza pandemic preparedness. Exp. Mol. Med. 2021;53:737–749. doi: 10.1038/s12276-021-00603-0.
28. Chan P.K. Outbreak of avian influenza A(H5N1) virus infection in Hong Kong in 1997. Clin. Infect. Dis. 2002;34:S58–S64. doi: 10.1086/338820.
29. Trombetta C., Piccirella S., Perini D., Kistner O., Montomoli E. Emerging Influenza Strains in the Last Two Decades: A Threat of a New Pandemic? Vaccines. 2015;3:172–185. doi: 10.3390/vaccines3010172.
30. Guo Y., Ding P., Li Y., Zhang Y., Zheng Y., Yu M., Suzuki Y., Zhang H., Ping J. Genetic and biological properties of H10N3 avian influenza viruses: A potential pandemic candidate? Transbound. Emerg. Dis. 2022 doi: 10.1111/tbed.14458.
31. World Health Organization. Avian Influenza A(H5N1) - United States of America. [(accessed on 28 July 2024)]. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON512
32. United States Department of Agriculture, Animal and Plant Health Inspection Service. Federal and State Veterinary, Public Health Agencies Share Update on HPAI Detection in Kansas, Texas Dairy Herds. Washington, D.C.: USDA; 2024. Available from: https://www.aphis.usda.gov/news/agency-announcements/federal-state-veterinary-public-health-agencies-share-update-hpai
33. World Health Organization. Global Influenza Programme. [(accessed on 30 March 2022)]. Available online: https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring/burden-of-dis-ease#:~:text=Influenza%20economics&text=WHO%20estimates%20that%20seasonal%20influenza,which%20can%20be%20influenza%2Drelated
34. Cassini A, Colzani E, Pini A, Mangen M-JJ, Plass D, McDonald SA, et al. Impact of infectious diseases on population health using incidence-based disability-adjusted life years (DALYs): results from the Burden of Communicable Diseases in Europe study, European Union and European Economic Area countries, 2009 to 2013. Eurosurveillance. 2018;23(16):17-00454.
35. Центры по контролю и профилактике заболеваний (CDC). Бремя гриппа. 2022. Доступно онлайн: https://www.cdc.gov/flu/about/burden/index.html (дата обращения: 5 июня 2023 г.).
36. Rosano A., Bella A., Gesualdo F., Acampora A., Pezzotti P., Marchetti S., Ricciardi W., Rizzo C. Investigating the impact of influenza on excess mortality in all ages in Italy during recent seasons (2013/14–2016/17 seasons) Int. J. Infect. Dis. 2019;88:127–134. doi: 10.1016/j.ijid.2019.08.003.
37. Nielsen J, Vestergaard LS, Richter L, Schmid D, Bustos N, Asikainen T, et al. European all-cause excess and influenza attributable mortality in the 2017/18 season: should the burden of influenza B be reconsidered? Clin Microbiol Infect. 2019;25(10):1266-76.
38. Касабекова Л.К., Смагул М.А., Бейсенбинова Ж.Б., Кузиева Г.Д., Смагулова М.К., Сагымбай А. Эпидемиологическая ситуация по заболеваемости ОРВИ и гриппом за эпидемиологический сезон 2018-2019 гг. в Республике Казахстан // Вестник КазНМУ. 2020. №1-1. – С. 685-689.
39. Sun P., Lu X., Xu C., Sun W., Pan B. Understanding of COVID-19 based on current evidence. J Med Virol. 2020; 92(6):548–551. https://doi.org/10.1002/jmv.25722
40. Treanor J.J. Clinical Practice. Influenza Vaccination. N Engl J Med. 2016;375(13):1261-8.
41. Agor J.K., Özaltın O.Y. Models for predicting the evolution of influenza to inform vaccine strain selection. Hum Vaccin Immunother. 2018;14(3):678–683. https://doi.org/10.1080/21645515.2017.1423152
42. World Health Organization. Influenza Vaccination Coverage and Effectiveness. [(accessed on 7 February 2022)]. Available online: https://www.euro.who.int/en/health-topics/communicable-diseases/influenza/vaccination/influenza-vaccination-coverage-and-effectiveness
43. Офис профилактики заболеваний и укрепления здоровья. Здоровые люди 2030: Увеличьте долю людей, которые ежегодно получают вакцину от гриппа — IID-09. Доступно онлайн: https://health.gov/healthypeople/objectives-and-data/browse-objectives/vaccination/increase-proportion-people-who-get-flu-vaccine-every-year-iid-09 (дата обращения: 17 августа 2023 г.).
44. Ministero Della Salute Dati Coperture Vaccinali. [(accessed on 30 March 2022)]; Available online:
45. World Health Organization Influenza (Seasonal) [(accessed on 22 February 2022)]. Available online: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
46. Trombetta C.M., Marchi S., Manini I., Lazzeri G., Montomoli E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev. Vaccines. 2019;18:737–750. doi: 10.1080/14760584.2019.1639503.
47. Ambrose C.S., Levin M.J. The rationale for quadrivalent influenza vaccines. Hum. Vaccines Immunother. 2012;8:81–88. doi: 10.4161/hv.8.1.17623.
48. Rondy M, Kissling E, Emborg H-D, et al.. Interim 2017/18 influenza seasonal vaccine effectiveness: combined results from five European studies. Euro Surveill 2018; 23: 18-00086. doi: 10.2807/1560-7917.ES.2018.23.9.18-00086
49. World Health Organization. Recommended composition of influenza virus vaccines for use in the 2024-2025 northern hemisphere influenza season [(accessed on 05 июля 2024)]. Available online: https://www.who.int/publications/m/item/recommended-composition-of-influenza-virus-vaccines-foruse-in-the-2024-2025-northern-hemisphere-influenza-season
50. World Health Organization Celebrating 70 Years of GISRS (the Global Influenza Surveillance and Response System) [(accessed on 15 March 2022)]. Available online: https://www.who.int/news/item/03-02-2022-2022-celebrating-70-years-of-gisrs-(the-global-influenzasurveillance-and-response-system)
51. Centers for Disease Control and Prevention Selecting Viruses for the Seasonal Influenza Vaccine. [(accessed on 15 March 2022)]; Available online: https://www.cdc.gov/flu/prevent/vaccine-selection.htm
52. Weir J.P., Gruber M.F. An overview of the regulation of influenza vaccines in the United States. Influenza Other Respir. Viruses. 2016;10:354–360. doi: 10.1111/irv.12383.
53. Stohr K., Bucher D., Colgate T., Wood J. Influenza virus surveillance, vaccine strain selection, and manufacture. Methods Mol. Biol. 2012;865:147–162. doi: 10.1007/978-1-61779-621-0_9.
54. Rajaram S., Wojcik R., Moore C., Ortiz de Lejarazu R., de Lusignan S., Montomoli E., Rossi A., Perez-Rubio A., Trilla A., Baldo V., et al. The impact of candidate influenza virus and egg-based manufacture on vaccine effectiveness: Literature review and expert consensus. Vaccine. 2020;38:6047–6056. doi: 10.1016/j.vaccine.2020.06.021.
55. Krammer F. The human antibody response to influenza A virus infection and vaccination. Nat. Rev. Immunol. 2019;19:383–397. doi: 10.1038/s41577-019-0143-6.
56. Trombetta C.M., Montomoli E. Influenza immunology evaluation and correlates of protection: A focus on vaccines. Expert Rev. Vaccines. 2016;15:967–976. doi: 10.1586/14760584.2016.1164046.
57. Squarcione S., Sgricia S., Biasio L.R., Perinetti E. Comparison of the reactogenicity and immunogenicity of a split and a subunit-adjuvanted influenza vaccine in elderly subjects. Vaccine. 2003;21:1268–1274. doi: 10.1016/S0264-410X(02)00401-2.
58. Centers for Disease Control and Prevention. Licensure of a High-Dose Inactivated Influenza Vaccine for Persons Aged ≥ 65 Years (Fluzone High-Dose) and Guidance for Use—United States, 2010. World Health Organization; Geneva, Switzerland: 2010.
59. Paul-Ehrlich-Institut Medicinal Products. Vaccines. Seasonal Influenza Vaccines. [(accessed on 1 March 2022)]. Available online: https://www.pei.de/EN/medicinal-products/vaccines-human/influenza-flu/influenza-flu-node.html
60. Administration U.S.F.D. Flucelvax Quadrivalent. [(accessed on 1 March 2022)]; Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/flucelvax-quadrivalent
61. Giurgea L.T., Morens D.M., Taubenberger J.K., Memoli M.J. Influenza Neuraminidase: A Neglected Protein and Its Potential for a Better Influenza Vaccine. Vaccines. 2020;8:409. doi: 10.3390/vaccines8030409.
62. Hegde NR (2015) Cell culture-based influenza vaccines: a necessary and indispensable investment for the future. Hum Vaccin Immunother 11(5):1223–1234. https://doi.org/10.1080/21645515.2015.1016666
63. Suzuki T., Kawaguchi A., Ainai A., Tamura S.I., Ito R., Multihartina P., Setiawaty V., Pangesti K.N., Odagiri T., Tashiro M., Hasegawa H. (2015) Relationship of the quaternary structure of human secretory IgA to neutralization of infuenza virus. Proc Natl Acad Sci USA 112:7809–7814. https://doi.org/10.1073/pnas.1503885112
64. Hoft DF, Lottenbach KR, Blazevic A, et al. Comparisons of the humoral and cellular immune responses induced by live attenuated influenza vaccine and inactivated influenza vaccine in adults. Clin Vaccine Immunol 2017; 24: e00414-16.
65. Ashkenazi S, Vertruyen A, Arístegui J, et al. Superior relative efficacy of live attenuated influenza vaccine compared with inactivated influenza vaccine in young children with recurrent respiratory tract infections. Pediatr Infect Dis J 2006; 25: 870–879. doi: 10.1097/01.inf.0000237829.66310.85
66. Belshe RB, Edwards KM, Vesikari T, et al. Live attenuated versus inactivated influenza vaccine in infants and young children. N Engl J Med 2007; 356: 685–696. doi: 10.1056/NEJMoa065368
67. European Medicines Agency Supemtek. [(accessed on 1 March 2022)]. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/supemtek
68. Inc., S.P . Flublok®Quadrivalent (Influenza Vaccine) Fact Sheet. Sanofi Pasteur Inc.; Paris, France: 2018.
69. Protein Sciences Corporation Superior Protection by Flublok® Influenza Vaccine in Seniors Documented in New England Journal of Medicine. [(accessed on 1 March 2022)]. Available online: https://www.prnewswire.com/news-releases/superior-protection-by-flublok-influenza-vaccine-in-seniors-documented-in-new-england-journal-of-medicine-300478298.html
70. Centers for Disease Control and Prevention. How Influenza (Flu) Vaccines Are Made. [(accessed on 1 March 2022)]; Available online: https://www.cdc.gov/flu/prevent/how-fluvaccine-made.htm
71. Felberbaum R.S. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol. J. 2015;10:702–714. doi: 10.1002/biot.201400438.
72. Buckland B., Boulanger R., Fino M., Srivastava I., Holtz K., Khramtsov N., McPherson C., Meghrous J., Kubera P., Cox M.M. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process. Vaccine. 2014;32:5496–5502. doi: 10.1016/j.vaccine.2014.07.074.
73. Safdar A., Rodriguez M.A., Fayad L.E., Rodriguez G.H., Pro B., Wang M., Romaguera J.E., Goy A.H., Hagemeister F.B., McLaughlin P., et al. Dose-related safety and immunogenicity of baculovirus-expressed trivalent influenza vaccine: A double-blind, controlled trial in adult patients with non-Hodgkin B cell lymphoma. J. Infect. Dis. 2006;194:1394–1397. doi: 10.1086/508493.
74. Treanor J.J., El Sahly H., King J., Graham I., Izikson R., Kohberger R., Patriarca P., Cox M. Protective efficacy of a trivalent recombinant hemagglutinin protein vaccine (FluBlok(R)) against influenza in healthy adults: A ran-domized, placebo-controlled trial. Vaccine. 2011;29:7733–7739. doi: 10.1016/j.vaccine.2011.07.128.
75. Dunkle L.M., Izikson R., Patriarca P., Goldenthal K.L., Muse D., Callahan J., Cox M.M.J. Efficacy of Recombinant Influenza Vaccine in Adults 50 Years of Age or Older. N. Engl. J. Med. 2017;376:2427-2436. doi: 10.1056/NEJMoa1608862.
76. Cox M.M., Izikson R., Post P., Dunkle L. Safety, efficacy, and immunogenicity of Flublok in the prevention of seasonal influenza in adults. Ther. Adv. Vaccines. 2015;3:97-108. doi: 10.1177/2051013615595595.
77. Trombetta C.M., Montomoli E. Progress on Seasonal and Pandemic Influenza Vaccines. Vaccines. 2021;9:1068. doi: 10.3390/vaccines9101068.
78. NIAID Universal Influenza Vaccine Research. [(accessed on 26 April 2022)]; Available online: https://www.niaid.nih.gov/diseases-conditions/universal-influenza-vaccine-research
79. Erbelding E.J., Post D.J., Stemmy E.J., Roberts P.C., Augustine A.D., Ferguson S., Paules C.I., Graham B.S., Fauci A.S. A Universal Influenza Vaccine: The Strategic Plan for the National Institute of Allergy and Infectious Diseas-es. J. Infect. Dis. 2018;218:347–354. doi: 10.1093/infdis/jiy103.
80. Moderna. Moderna Announces New Development Programs Ahead of 3rd Annual Vaccines Day. [(accessed on 26 April 2022)]. Available online: https://investors.modernatx.com/news/news-details/2022/Moderna-Announces-New-Development-Programs-Ahead-of-3rd-Annual-Vaccines-Day/default.aspx.
Рецензия
Для цитирования:
Байызбекова Д. ОБЗОР ТЕКУЩЕЙ СИТУАЦИИ ПО ВАКЦИНАМ ПРОТИВ СЕЗОННОГО ГРИППА. Биобезопасность и Биотехнология. 2024;(18):75-93. https://doi.org/10.58318/2957-5702-2024-18-75-93
For citation:
Baiyzbekova D.A. OVERVIEW OF THE CURRENT SITUATION ON SEASONAL INFLUENZA VACCINES. Biosafety and Biotechnology. 2024;(18):75-93. (In Russ.) https://doi.org/10.58318/2957-5702-2024-18-75-93